Regional Design Approaches

Regional design approaches embody the ethos of contextual sensitivity, blending cultural, climatic, and geographical influences to create structures harmoniously integrated with their surroundings. Rooted in the belief that architecture should respond to local conditions, these approaches celebrate regional materials, traditional craftsmanship, and vernacular styles. By embracing the unique characteristics of a specific locale, regional design fosters a sense of place and cultural identity. It seeks to optimize energy efficiency by harnessing natural resources and climate patterns. Moreover, regional design encourages sustainable practices by minimizing transportation of materials and reducing the carbon footprint associated with construction. Ultimately, it showcases a deep respect for the environment and heritage while offering innovative solutions that resonate with the community and enhance the built environment's overall resilience and longevity.

Read More

Microclimate

The microclimate refers to the local climatic condition that exists within a small specific area such as a garden, park or urban street. It is influenced by factors such as the surrounding terrain, vegetation cover, topography and buildings. The urban heat island effect is a phenomenon where urban or developed areas are significantly warmer than surrounding rural areas, typically by several degrees Celsius. This effect is caused by a combination of factors related to human activities, including the construction of buildings and roads, the use of dark surfaces, loss of vegetation and the generation of heat by vehicles, machinery and other sources. Trees and other vegetation provide shade and cool the air through the process of transpiration, so when vegetation is removed or reduced, there is less shade and cooling, leading to higher temperatures. The urban heat island effect can have several negative impacts on human health, including increased risk of heart related illnesses, increased energy consumption and increased air pollution and greenhouse gas emission.

Read More

Atmospheric Conditions

This talk is about passive resilience and atmospheric conditions. It discusses the differences between the atmosphere and climate, and the four factors that make up the atmospheric condition: temperature, humidity, wind, solar exposure, and precipitation. Temperature has a direct impact on energy and efficiency, and passive design techniques such as building orientation, insulation, and shading can help maintain comfortable indoor temperatures. In hot climates, passive cooling strategies such as shading and ventilation can reduce the need for active cooling systems. In cold climates, passive solar heating and thermal mass materials can help reduce the need for energy intensive heating systems. It is important to consider the temperature range for a location when selecting building materials to ensure they are durable and appropriate for the local climate. Energy efficiency can be improved by considering the temperature of a building and using passive cooling techniques.

Read More

Designing for Climatic Zones

Designing for climates is the process of designing spaces that are well adapted to the local climate and weather conditions, with the goal of minimizing the building's energy consumption, maximizing indoor comfort, and reducing the negative impacts on the environment. Climate plays an important role in shaping human settlement, as it affects a ways people interact with the environment and the types of buildings and infrastructure that are required to support their needs. Contextual design and place-based design includes the spirit of place, also referred to as a genius loci, which focuses on the unique identity of place and its local natural systems, landscaping and environment. An example of this is the Danish vernacular wing houses and half timber houses, which were designed to withstand the harsh weather conditions in Denmark and were orientated with S facades or SW facades to maximize solar gain and minimize exposure to prevailing winds. Climate is affected by latitude, distribution of land and sea wind systems as well as the altitude of the location, and microclimates refer to the specific conditions and the immediate vicinity of a site such as wind patterns, temperature fluctuations and exposure to sunlight.

Read More

Water Resilience: Retreat Strategies

Flood mitigation strategies includes raised ground, flood proofing, and strategic retreat. These approaches address the increasing flood risks in developed areas. Retreat strategies involve removing structures from flood-prone zones, restoring natural processes.

  • Raised ground, entails elevating land to mitigate flooding risks. Particularly effective in low-lying regions adjacent to water bodies, it functions as a barrier against floodwaters, safeguarding buildings and homes. It can be complemented by other flood protection measures. However, this approach can be costly and requires adaptation to rising sea levels.

  • Flood proofing, reduces flood impacts on structures through modifications like elevation or flood barriers. These structural and non-structural measures shield buildings and equipment. Effective flood proofing necessitates meticulous planning and collaboration.

  • Strategic retreat, involves relocating communities and infrastructure from flood-prone areas. This curtails flood damage risks, but the process must be well-coordinated to minimize social and economic burdens. Addressing equity and cultural concerns is crucial, as certain communities may be disproportionately affected.

These strategies should be part of a comprehensive flood risk reduction approach, enhancing flood resilience by considering both their benefits and challenges.

Read More

Water Resilience: Retention Strategies

Flood retention strategies explores four key strategies: floodable plains, floodable squares, polders, and stormwater infiltration. Unlike defensive methods, these strategies store excess water to mitigate floods, crucial in urban areas with rising surface flooding and compromised drainage. Stormwater infiltration aids flood control by absorbing rainwater into the ground rather than overwhelming stormwater systems.

  • Floodable plains act as catchment areas for heavy rain and overflow, doubling as recreational spaces during dry spells.

  • Floodable squares are intentionally designed areas that transform into pools during rain, yet serve as urban spaces when dry.

  • Polders, reclaimed lowlands surrounded by dikes, protect against floods and enable development, requiring careful maintenance and sustainable practices.

  • Stormwater infiltration employs green techniques like rain gardens and permeable pavements to naturally filter and slow runoff.

These strategies underscore the importance of synergy between nature and infrastructure, fostering resilience, safety, and environmental well-being.

Read More

Water Resilience: Hard Strategies

Water resilience – hard strategies focus on five primary hard flood protection strategies: sea walls, flood walls, revetments, breakwaters, and dikes. While historically predominant, these resource-intensive approaches aim to resist floods. However, the shift towards resilient alternatives emphasizes the importance of a comprehensive approach. For instance,

  • Sea walls can serve as both protective barriers and communal infrastructure, highlighting the potential for multifunctionality.

  • Flood walls, akin to sea walls, require integration with softer strategies.

  • Revetments, sloping structures along riverbanks, mitigate wave energy and erosion, with design considerations for vegetation and water connections.

  • Breakwaters, perpendicular to shorelines, reduce wave energy and storm damage, offering opportunities for biodiversity integration and improved access.

  • Dikes, or levees, safeguard critical areas from floodwaters and require stability and ecosystem compatibility in design.

Despite challenges like material intensity and maintenance costs, hard strategies offer some benefits and enduring protection. However, integrating these strategies with softer approaches ensures effective flood risk management.

Read More

Sustainable Development

The United Nations established 17 interconnected Sustainable Development Goals (UN SDGs) to underpin sustainable development with the idea to protect the planet, end poverty and ensure people can enjoy peace and prosperity. All 17 goals are relevant to your architecture project, and in your project you must ensure that you understand their interconnections and relevance to your project and how you can use the goals to understand your responsibility as an architect. At the same time also be aware that the UN SDGS are still based on operating within the current socio-economic growth principles. Instead, the goal of the economy (or human activity in general) should not be to grow but to thrive within planetary boundaries. Your project should explore how we can thrive within our planetary boundaries.

Read More

Retrofit Unintended Circumstances

Architects need to prevent building demolition and should transform the existing fabric instead of building new. Low energy retrofit not only reduces carbon emissions, resource use and urban sprawl, but also tackles social injustices (e.g. energy poverty) and energy security. Designing low energy retrofits is not just upgrading for energy efficiency, but also involves:

• Enhancing carbon storage by rewilding and using bio-based materials

• Circular economy principles and use of non-virgin materials

• Future proofing through future climate change adaptation

• Multifunctionality and adaptability, reducing excess floor area and sharing of spaces

• Avoid unintended consequences that affect health and well being or jeopardises the building fabric and that does not materialise energy and carbon reductions.

Read More

Low Energy Retrofit

Architects need to prevent building demolition and should transform the existing fabric instead of building new. Low energy retrofit not only reduces carbon emissions, resource use and urban sprawl, but also tackles social injustices (e.g. energy poverty) and energy security. Designing low energy retrofits is not just upgrading for energy efficiency, but also involves:

• Enhancing carbon storage by rewilding and using bio-based materials

• Circular economy principles and use of non-virgin materials

• Future proofing through future climate change adaptation

• Multifunctionality and adaptability, reducing excess floor area and sharing of spaces

• Avoid unintended consequences that affect health and well being or jeopardises the building fabric and that does not materialise energy and carbon reductions.

Read More

Insulation

Insulation reduces and slows down heat transfer and therefore reduces heat loss in winter and heat gains in summer. This significantly reduces the operational energy and carbon impacts. To design low energy buildings you need to specify materials with low k-values, i.e. thermally insulating materials that reduce heat transfer. Human-made materials often have better thermal conductivity, so less insulation material is often needed for the same thermal performance, but at often a higher embodied carbon cost (i.e. more energy to manufacture). This is why it is important to evaluate the full life-cycle implications of insulation materials should be carefully considered, not only its thermal performance.

Read More

Building Fabric

Because the design of the building fabric is so important for indoor environmental comfort and reduced energy use, integrating it right at the start of your project is referred to as fabric first principles. This is crucial for passive resilience and low energy design. Understanding the principles of heat transfer (conduction, radiation, convection) aids in designing appropriate climatic design solutions. This talk covers these heat transfer principles and how it affects decision-making about your design in different climates.

Read More

Background Ventilation

For summer and in warmer climates we can use passive cooling strategies, including natural purge ventilation to cool spaces and people. But continuous year-round background ventilation is also needed to remove humidity and safeguard good air quality and occupant thermal comfort. Continuous year-round background ventilation is difficult to provide reliably through natural ventilation. Instead MVHR (Mechanical ventilation with heat recovery) systems are a low energy option, providing controlled extraction of warm, stale air and recovering heat to warm up the fresh air supply. When combined with high levels of insulation and airtightness, this provides low heating needs in a cold and temperate climate – all key strategies for low energy buildings

Read More

Thermal Mass

Thermal mass can balance winter space heating needs in continuously used or heated / cooled buildings. In warm periods in cold/temperate and in hot/dry climates, thermal mass can help keep buildings passively cool. This might achieve energy and associated operational carbon savings and greater thermal comfort. Thermal mass must always be combined with good night-cooling to avoid build-up of high temperatures in summer-time. It is also increasingly important to design (summer) solar shading to prevent direct incidence of the sun inside spaces: i.e. reduce the source of heat in the spaces to begin with to reduce overheating risk.

Thermal mass materials need to be exposed to the air, and careful specification is needed to not create buildings with high thermal mass but also high embodied energy and carbon.

Read More

Windows

Windows are an important design aspect of your project because they affect and are interconnected with many aspects of your design. Windows provide spatial delight and atmosphere, enable solar gains when desirable, and natural summer ventilation and cooling when needed and they allow light, views and connection to the outside. All of these aspects are important for comfort, health and wellbeing and energy use and associated carbon emissions in buildings. It is therefore important in your project that you consider windows from all its different aspects: ., their orientation, location, sizing, shading, thermal specification (U-values and g-values) but also their usability, openability and cleaning ability.

Read More

Passive Cooling of Buildings

You must always prioritise passive cooling strategies before considering active cooling. Key passive cooling strategies that you should include in your project at the building scale:

• Ensure all sources of overheating are tackled first and risks minimised.

• Green and blue infrastructure at different scales.

• Social infrastructure and provision of ‘cool zones’.

• Reducing internal heat gains and understanding occupant behaviour.

• Building design that reduces the need for cooling through greenery, efficient fabric, reflective surfaces, solar shading, purge ventilation, self-shaded built form and courtyards, thermal mass and careful window design.

Ensure climate justice as part of any passive and active cooling approach: everyone has the right to access cool spaces in summer.

Read More

Passive Cooling of Urban Areas

A ‘cool’ urban environment reduces the need for energy use to provide active cooling and ensures that buildings and spaces are at less risk of overheating. Key passive cooling strategies that you should include in your project at the urban scale are ensuring all sources of potential overheating are first minimised; the creation of extensive green, blue and social infrastructures at different scales, and working with knowledge about the prevailing wind to create urban environments that are comfortable year-round. In your project you should investigate the context and climate early on. and you need to radically 're-wild' our urban environment; this has many other co-benefits aside from summer cooling.

Read More

Natural Ventilation

Natural ventilation is used to reduce overheating during hot periods (e.g. heat waves, in a hot climate). You must always consider natural ventilation and cooling strategies before considering active systems. Natural ventilation needs and strategies differ depending on different climates and building use and other factors, so you need to explore and understand the needs of your project and the context at the early design stages (Step 1). Natural ventilation in summer / during hot periods can be achieved with purge ventilation (cross-ventilation, single-sided ventilation, stack ventilation - also used for night-cooling), and earth tubes and evaporative cooling. In a cold / temperate climate year-round controlled background ventilation is also needed to ensure good indoor air quality (IAQ), this is often provided by low-energy Mechanical Ventilation with Heat Recovery (MVHR).

Read More

Gando Primary School

The Gando Primary School was built to expand the sparse network of schools in the province of Boulgou, in the east of Burkina Faso, and addressed two characteristic problems of many educational buildings in the area: poor lighting and ventilation. In order to achieve sustainability, the project was based on the principles of designing for climatic comfort with low-cost construction, making the most of local materials and the potential of the local community, and adapting technology from the industrialized world in a simple way. Underlying the project was a strong didactic component: it was designed as an exemplar that would raise awareness in the local community of the merits of traditional materials, updated with simple techniques that would need few new skills. The school building includes three volumes, each containing a classroom measuring 7 x 9 metres, connected by a single roof make up the basic structure of the building, and each one of them accommodates one classroom for fifty students.

Read More

Zoning and Clustering

In your project you should consider the zoning or, clustering (i.e. the proximity) of functions, users, services and spaces to enable efficient use of space, provision of services, and the management of the building. Buffer zones and transitional spaces have a fundamental role to play in helping to zone and cluster spaces/services/uses etc. If designed well they can function as social infrastructure and creating delightful spaces and experiences that give a sense of place. They should also be adaptable.

Read More