Self-sustaining Design Approaches

Self-sustaining design approaches at their core, these approaches embrace a holistic philosophy that seeks to harmonize human habitats with the natural world while reducing resource consumption and minimizing environmental impact.

Central to this concept is the aim to achieve self-sufficiency, wherein buildings generate their energy and resources, striving for net-zero or even positive energy balance. This involves integrating renewable energy sources such as solar panels, wind turbines, and geothermal systems, coupled with innovative energy storage solutions.

Passive design strategies play a vital role, leveraging the local climate and environment to optimize heating, cooling, and lighting without heavy reliance on mechanical systems. Water conservation is also paramount, employing techniques like rainwater harvesting, greywater recycling, and efficient irrigation.

Materials selection takes on a sustainable ethos, favouring eco-friendly and locally sourced options to reduce embodied energy and minimize transportation impact.

Read More

Regional Design Approaches

Regional design approaches embody the ethos of contextual sensitivity, blending cultural, climatic, and geographical influences to create structures harmoniously integrated with their surroundings. Rooted in the belief that architecture should respond to local conditions, these approaches celebrate regional materials, traditional craftsmanship, and vernacular styles. By embracing the unique characteristics of a specific locale, regional design fosters a sense of place and cultural identity. It seeks to optimize energy efficiency by harnessing natural resources and climate patterns. Moreover, regional design encourages sustainable practices by minimizing transportation of materials and reducing the carbon footprint associated with construction. Ultimately, it showcases a deep respect for the environment and heritage while offering innovative solutions that resonate with the community and enhance the built environment's overall resilience and longevity.

Read More

Microclimate

The microclimate refers to the local climatic condition that exists within a small specific area such as a garden, park or urban street. It is influenced by factors such as the surrounding terrain, vegetation cover, topography and buildings. The urban heat island effect is a phenomenon where urban or developed areas are significantly warmer than surrounding rural areas, typically by several degrees Celsius. This effect is caused by a combination of factors related to human activities, including the construction of buildings and roads, the use of dark surfaces, loss of vegetation and the generation of heat by vehicles, machinery and other sources. Trees and other vegetation provide shade and cool the air through the process of transpiration, so when vegetation is removed or reduced, there is less shade and cooling, leading to higher temperatures. The urban heat island effect can have several negative impacts on human health, including increased risk of heart related illnesses, increased energy consumption and increased air pollution and greenhouse gas emission.

Read More

Atmospheric Conditions

This talk is about passive resilience and atmospheric conditions. It discusses the differences between the atmosphere and climate, and the four factors that make up the atmospheric condition: temperature, humidity, wind, solar exposure, and precipitation. Temperature has a direct impact on energy and efficiency, and passive design techniques such as building orientation, insulation, and shading can help maintain comfortable indoor temperatures. In hot climates, passive cooling strategies such as shading and ventilation can reduce the need for active cooling systems. In cold climates, passive solar heating and thermal mass materials can help reduce the need for energy intensive heating systems. It is important to consider the temperature range for a location when selecting building materials to ensure they are durable and appropriate for the local climate. Energy efficiency can be improved by considering the temperature of a building and using passive cooling techniques.

Read More

Designing for Climatic Zones

Designing for climates is the process of designing spaces that are well adapted to the local climate and weather conditions, with the goal of minimizing the building's energy consumption, maximizing indoor comfort, and reducing the negative impacts on the environment. Climate plays an important role in shaping human settlement, as it affects a ways people interact with the environment and the types of buildings and infrastructure that are required to support their needs. Contextual design and place-based design includes the spirit of place, also referred to as a genius loci, which focuses on the unique identity of place and its local natural systems, landscaping and environment. An example of this is the Danish vernacular wing houses and half timber houses, which were designed to withstand the harsh weather conditions in Denmark and were orientated with S facades or SW facades to maximize solar gain and minimize exposure to prevailing winds. Climate is affected by latitude, distribution of land and sea wind systems as well as the altitude of the location, and microclimates refer to the specific conditions and the immediate vicinity of a site such as wind patterns, temperature fluctuations and exposure to sunlight.

Read More

Climatic Zones

This talk is about the relationship between climate and architecture, and how understanding the climatic zones can help inform the design of a building. The northern and southern hemispheres, as well as the Equatorial zone, have unique environmental conditions that influence the design of spaces, the architectural approach, and the materials used. The global wind directions are largely influenced by the Earth's rotation and the unequal heating of the Earth's surface by the sun, and the distribution of land and water masses across the planet. Examples of wind directions include the trade winds, westerly winds, and polar easterlies. It is important to consider these climatic factors when designing a building, as the solar radiation and global winds can have a significant impact on the amount and intensity of solar radiation that a building receives.

Read More

Circular Design Approaches

Circular design approaches embrace the principles of circular economy, aiming to minimize waste and optimize resource usage throughout a building's lifecycle. This innovative approach challenges the traditional linear "take-make-dispose" model by promoting a closed-loop system. Architectural circularity involves designing structures that prioritize durability, adaptability, and ease of disassembly. Materials are chosen based on their potential for reuse, recycling, or upcycling, reducing the depletion of virgin resources and curbing environmental impact. They also emphasize modular construction, enabling components to be easily replaced or repurposed as needs evolve. This approach extends the lifespan of buildings, enhances their resilience, and reduces demolition waste.

Read More

Regenerative Design Approaches

Distinct from sustainable design, regenerative architecture reverses ecological damage and seeks a net-positive environmental impact. Transitioning from sustainability to regeneration, architects question how to not only use limited resources but also restore them. This approach fosters resilience to natural challenges, providing a progressive solution to the climate and biodiversity crisis.

The regenerative design process employs systemic thinking and involves integrating the natural world as both the inspiration and generator for architectural designs. It encompasses two essential aspects: minimizing environmental impacts through conscious material choices, reduced energy consumption, and intelligent design; and treating the environment as an equal partner in the architectural process. By understanding natural and living systems deeply, regenerative architecture embraces millions of years of evolution and engineering, creating structures that harmoniously coexist with their surroundings.

By embracing regenerative architecture, the construction industry can shift from minimizing harm to actively benefiting the environment, aligning design with nature's principles and promoting a more sustainable, prosperous future.

Read More

Resilient Design Approaches

Resilient design approaches entail the strategic integration of principles and strategies that enhance a building's capacity to withstand and recover from various stressors, such as natural disasters, climate change, and socio-economic shifts. This approach emphasizes not only the durability of structures, but also their adaptability and ability to bounce back in the face of adversity. Resilience operates across scales and timeframes, encompassing buildings, communities, and regions.

  • At the building scale, strategies encompass handling climate impacts, situating critical systems smartly, using future climatic models, passive survivability, robust materials, beauty, energy optimization, water conservation, waste solutions, local resourcing, and hazard-resistant specifications.

  • Community resilience involves social structures, local food systems, transport alternatives, stormwater management, communication hubs, education, and infrastructure planning.

  • Regionally, policies must value ecosystem services, protect aquifers, develop transportation and renewable energy networks, encourage diverse economies, and support regional manufacturing.

While total resilience might be unattainable, incremental steps can enhance resilience progressively, positioning systems and societies for better preparedness and responsiveness.

Read More

End of Life Scenarios

This talk explores end-of-life scenarios in architectural design, highlighting five essential factors. Firstly, embracing uncertainty in future design involves envisioning diverse scenarios considering climate, life cycles, and technology. Feasible end-of-life plans require mapping structures, recycling options, and user preferences. Climate emergencies call for adaptable solutions with flexibility and reversibility. Secondly, "design for disassembly" advocates creating reusable material banks through systematic dismantling, favouring modularity and prefabrication. Thirdly, recognizing varying element lifespans informs organized design layers for efficient maintenance and disassembly. Fourthly, design principles like modular structures, open systems, and durable joints ensure non-toxic, recyclable materials. Lastly, extending a building's life entails user, maintenance, and disassembly manuals, alongside material passports for informed reuse. Overall, there should be emphasis on foresight, adaptability, and systematic approaches to enhance sustainable architectural practices.

Read More

Design for Flexibility

Designing for flexibility in constructing long-lasting buildings aims to create structures that can effectively adapt to changing circumstances, whether due to demographic shifts, climatic variations, or evolving functions. To achieve this, a flexible building should efficiently accommodate diverse scenarios and potential changes without requiring significant alterations. The approach encompasses adaptability, transformability, and convertibility – all contributing to a resilient structure. Designing for climate change adaptation involves incorporating appropriate architectural solutions to withstand disasters and enable swift reconstruction. This necessitates open-ended designs with robust load-bearing capacities, modular expandability, and energy-efficient systems. Moreover, the concept extends to user-centric adaptations, encouraging easy separations and open layouts. Key factors encompass optimal room dimensions, accessible designs, avoidance of built-in fixtures, and effective energy and infrastructure planning. Emphasizing reversible construction and disassembly adds to the approach's sustainability

Read More
Level_How, Level_Detailed, Foundation_Adaptation Ioannis Lykouras Level_How, Level_Detailed, Foundation_Adaptation Ioannis Lykouras

Reuse/Retrofit

The text highlights the sustainability of reusing and retrofitting existing buildings over demolition. This approach involves careful analysis of structures and materials for potential retention. Designing with a climate emergency focus encourages circular construction and reuse, treating buildings as resources.

  • Reuse transforms buildings into material banks via urban mining, extracting materials for new purposes.

  • Adaptive reuse involves repurposing buildings for different needs through renovation, conversion, infill, redesign, or addition.

  • Material reuse involves repurposing materials for new functions, including upcycling and recycling.

Read More

Water Resilience: Retreat Strategies

Flood mitigation strategies includes raised ground, flood proofing, and strategic retreat. These approaches address the increasing flood risks in developed areas. Retreat strategies involve removing structures from flood-prone zones, restoring natural processes.

  • Raised ground, entails elevating land to mitigate flooding risks. Particularly effective in low-lying regions adjacent to water bodies, it functions as a barrier against floodwaters, safeguarding buildings and homes. It can be complemented by other flood protection measures. However, this approach can be costly and requires adaptation to rising sea levels.

  • Flood proofing, reduces flood impacts on structures through modifications like elevation or flood barriers. These structural and non-structural measures shield buildings and equipment. Effective flood proofing necessitates meticulous planning and collaboration.

  • Strategic retreat, involves relocating communities and infrastructure from flood-prone areas. This curtails flood damage risks, but the process must be well-coordinated to minimize social and economic burdens. Addressing equity and cultural concerns is crucial, as certain communities may be disproportionately affected.

These strategies should be part of a comprehensive flood risk reduction approach, enhancing flood resilience by considering both their benefits and challenges.

Read More

Water Resilience: Soft Strategies

Three key soft strategies for flood management include living shorelines, dunes and beach nourishment, and floating wetlands. Soft strategies emphasize enables effective flood management through holistic, nature-based solutions to mitigate flooding risks. They are gaining popularity due to their restorative nature, and are often paired with hard strategies for hybrid solutions. These strategies provide habitat for biodiversity and can serve as recreational spaces, although human disruption remains a concern.

  • Living shorelines are inclined natural banks with vegetation and natural materials that lessen wave impact, best suited for moderate flooding when combined with levees.

  • Dunes act as natural barriers, but proper vegetation is essential for stability. Armored dunes can enhance protection but need careful design.

  • Beach nourishment widens beaches, reducing erosion and storm surge impact, although its effectiveness varies. Designing these strategies involves protecting vegetation, creating paths, and setting back development.

  • Floating wetlands, made of buoyant materials, are adaptable and best for sheltered waters. They rise with floodwaters, filter pollutants, and provide wildlife habitat.

Challenges for soft strategies include extreme weather limitations, maintenance costs, and technical expertise. Opportunities lie in ecological benefits, affordability, community involvement, and environmental enhancement.

Read More

Water Resilience: Hard Strategies

Water resilience – hard strategies focus on five primary hard flood protection strategies: sea walls, flood walls, revetments, breakwaters, and dikes. While historically predominant, these resource-intensive approaches aim to resist floods. However, the shift towards resilient alternatives emphasizes the importance of a comprehensive approach. For instance,

  • Sea walls can serve as both protective barriers and communal infrastructure, highlighting the potential for multifunctionality.

  • Flood walls, akin to sea walls, require integration with softer strategies.

  • Revetments, sloping structures along riverbanks, mitigate wave energy and erosion, with design considerations for vegetation and water connections.

  • Breakwaters, perpendicular to shorelines, reduce wave energy and storm damage, offering opportunities for biodiversity integration and improved access.

  • Dikes, or levees, safeguard critical areas from floodwaters and require stability and ecosystem compatibility in design.

Despite challenges like material intensity and maintenance costs, hard strategies offer some benefits and enduring protection. However, integrating these strategies with softer approaches ensures effective flood risk management.

Read More

Health of Non-humans

Your project should never contribute to tipping points and ecological or climate breakdown. Instead, use your design to identify how you can positively impact the planet and restore some of the previous damage done. This means redirecting current human-centric design approaches towards an inclusive, biodiverse, restorative future using the principles of radical inclusivity, biophilia and topophilia. We should strive towards an approachable architecture that can be used by different living-beings in different (adaptable) ways. Following these principles steers us towards more ethical professional practices that support planetary health, instead of damaging it.

Read More

Care

Designing for the climate emergency is not only about focusing on direct impacts (i.e., reducing energy use and CO2 emissions), but responding to its symptoms, (in)direct causes and often unequal consequences. As architects we also hold a significant responsibility towards the public in our work: we are designing the spatial frameworks in which people live their lives and participate in society. As an architect you have a moral obligation to make better decisions, even if you are not rewarded for doing so. This requires a commitment to continuous research, conscious decision-making, curiosity, and creativity to innovate and to challenge the often damaging and unfair status quo. It also requires an in-depth understanding of questions of fairness and justice related to one’s own work.

Read More

Ethics

As architects we have the moral responsibility to work beyond the brief and be critical about clients’ wishes or aspirations which might perpetuate (social, spatial or climate) injustices. To take into consideration international justice & intergenerational ethics you should commit to social, spatial and climate justice. To do this, design for resilience, adaptability and inclusivity. To take in consideration human and non-human relationships, each project should commit to restorative and regenerative design, centred around the principles of radical inclusivity, biophilia and topophilia.

Read More

Sustainable Development

The United Nations established 17 interconnected Sustainable Development Goals (UN SDGs) to underpin sustainable development with the idea to protect the planet, end poverty and ensure people can enjoy peace and prosperity. All 17 goals are relevant to your architecture project, and in your project you must ensure that you understand their interconnections and relevance to your project and how you can use the goals to understand your responsibility as an architect. At the same time also be aware that the UN SDGS are still based on operating within the current socio-economic growth principles. Instead, the goal of the economy (or human activity in general) should not be to grow but to thrive within planetary boundaries. Your project should explore how we can thrive within our planetary boundaries.

Read More

Future Generations

Designing for vague ‘future generations’ mainly focuses on the use of resources and the environmental impact of our actions and does not clarify who we design for today, in the present, nor who will be impacted in the future. In your project, you need to unfold why you design and who for. This includes: the local user, the public, the non-human and nature but also a global responsibility towards people, non-humans and nature further away, and ultimately our planet. We introduce the concept of ‘care’ which recognises and embraces our (inter)dependence, connection and responsibility towards others at its heart, including the non-human. This profoundly challenges the (modernist) ideal of an independent, visionary architect who only designs for themselves. But without this care, empathy and solidarity towards the user we cannot have truly sustainable architecture.

Read More